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Abstract—Fault diagnosis in rolling bearings presents 

considerable challenges due to the dynamic and complex nature of 

machine operations. In real-world scenarios, systems continually 

accumulate new data, often including previously unknown fault 

types. Traditional diagnostic methods frequently struggle to adapt 

to these evolving fault patterns, making it difficult to maintain 

accuracy and reliability in fault detection. To address these 

challenges, this paper proposes the VMD-Enhanced Gradient 

Episodic Memory Model (VEGEM). Firstly, Variational Mode 

Decomposition (VMD) is utilized for data preprocessing, which 

effectively decomposes signals into key frequency components, 

isolating essential features and reducing noise. Secondly, the Wide 

Deep Convolutional Neural Network (WDCNN) is employed as the 

baseline framework for fault diagnosis, leveraging its deep 

learning capabilities to handle vibration signals with high 

precision. Thirdly, the incremental learning framework is 

enhanced using Gradient Episodic Memory (GEM), a constrained 

replay technique that manages gradient updates to prevent 

catastrophic forgetting. This method ensures new learning does 

not disrupt previously acquired knowledge. The proposed 

VEGEM model was rigorously tested on the CWRU dataset, 

demonstrating great robustness and adaptability. It effectively 

incorporated new fault categories and maintained an accuracy 

rate above 90% across five incremental learning phases. These 

results confirm that the VEGEM model can effectively resolve the 

issues of catastrophic forgetting in fault diagnosis, providing a 

reliable, efficient, and adaptable solution for the incremental 

learning requirements of modern industrial environments. 

Keywords—Rolling Bearings, Intelligent Fault Diagnosis, 

Continuous Wavelet Transform, Mode Decomposition, Incremental 

Learning 

I. INTRODUCTION 

Rolling bearings play a pivotal role in the seamless operation 
of industrial machinery, underpinning the success of modern 
industrial automation. As essential components, the reliability of 
rolling bearings directly influences the efficiency and safety of 
entire production processes. However, the inherent complexities 
of mechanical operations and external environmental factors 
contribute to frequent bearing failures, presenting substantial 
challenges for maintenance and operational continuity. 

Traditional fault diagnosis methods, such as vibration 
analysis and acoustic diagnosis, rely heavily on manual 
interpretation of data and often fail to adapt to the dynamic 

nature of industrial environments. These methods struggle with 
the rapid evolution of machinery conditions and the emergence 
of new types of faults. This research aims to address these 
challenges by developing an incremental learning model that 
can continuously adapt to new fault patterns and evolve with the 
machinery it monitors, thereby enhancing diagnostic accuracy 
and system reliability. 

Incremental learning is a pivotal approach in modern 
machine learning, uniquely designed to update diagnostic 
models incrementally as new data becomes available. This 
method allows for fine-tuning models with new information 
without the necessity to retrain them from scratch. A 
fundamental advantage of incremental learning is its capability 
to mitigate catastrophic forgetting—a prevalent challenge in 
traditional learning models where integrating new knowledge 
often results in the loss of previously acquired information. By 
preserving existing knowledge while integrating new data, 
incremental learning significantly enhances the adaptability of 
systems to evolving fault conditions. 

Incremental learning encompasses various scenarios [1] 
such as Class Incremental Learning, where the model's output 
space expands over time to include new categories without 
forgetting old ones; Task Incremental Learning, focusing on the 
model’s ability to learn different sets of categories across 
successive tasks without sharing information between them; and 
Domain Incremental Learning, which deals with changes in the 
input data distribution while the output categories remain 
constant. These scenarios are crucial in defining the adaptability 
of incremental learning models to new information while 
preserving existing knowledge, whether adapting to new 
classes, distinguishing between tasks, or responding to changing 
environments without relearning known categories. 

Methods of incremental learning are broadly classified into 
three types: regularization methods, which mitigate forgetting 
by adding constraints to the loss function to preserve old 
knowledge [2]; rehearsal methods, which involve retraining the 
model on a mix of old and new data [3]; and parameter isolation 
methods, where some of the model parameters are frozen during 
the training process [4]. These methods enable the model to 
assimilate new information while retaining previously acquired 
knowledge, effectively emulating continual human learning.  
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This paper proposes VMD-Enhanced Gradient Episodic 
Memory Model (VEGEM), which focuses on Class Incremental 
Learning and adopts the Gradient Episodic Memory [5] (GEM), 
a constrained replay approach that strategically manages 
gradient updates to prevent catastrophic forgetting. This 
technique involves restricting gradient adjustments during 
training to ensure new learning does not disrupt previously 
acquired knowledge. Incorporating Variational Mode 
Decomposition [6] (VMD) significantly enhances the model's 
performance by effectively decomposing signals into key 
frequency components. This preprocessing step isolates 
essential features and reduces noise, enabling the GEM model 
to focus on relevant data. Consequently, VMD helps mitigate 
catastrophic forgetting, ensuring stable and distinctive feature 
extraction. The synergy between VMD and GEM boosts the 
robustness and accuracy of the fault diagnosis system across 
incremental learning phases. 

II. METHODOLOGY 

A. Data Collection and Preprocessing 

To ensure the reliability and robustness of the fault diagnosis 
model, comprehensive data collection and meticulous 
preprocessing are crucial. The data used in this study were 
primarily derived from bearing fault experiments conducted 
using a motor test bench setup. This setup is equipped with 
various sensors that capture vibration signals under different 
operational conditions to simulate real-world scenarios. 

In the approach to data preprocessing, besides VMD, two 
more methods have been tried to enhance the model's input data 
quality: Continuous Wavelet Transform [7] (CWT) and 
Empirical Mode Decomposition [8] (EMD). The comparative 
results of these preprocessing techniques are presented in the 
third section. 

VMD decomposes a signal into a predefined number of 
band-limited Intrinsic Mode Functions (IMFs). VMD enforces 
a bandwidth constraint on the mode functions to enhance the 
separation of modal components, as in (1), where 𝑢𝑘 is the mode, 

�̂�𝑘 (𝜔) is the corresponding frequency domain representation, 
𝜔𝑘 is the central frequency, and 𝜏 is the delay of the data. It is 
particularly useful for isolating and identifying overlapping 
frequencies that may indicate faults. 

𝑚𝑖𝑛{𝑢𝑘},{𝜔𝑘} {∑ ∫ (𝛿(𝑡) −  
𝜕

𝜕𝑡
[(

�̂�𝑘 (𝜔)

𝑒−𝑗𝑤𝜏
)])

2𝐾

𝑘=1

𝑑𝜔} (1) 

 

These preprocessing techniques can extract meaningful 
features from raw vibration data. The features extracted are then 
utilized to train the incremental learning model, ensuring that it 
can effectively learn and adapt to new fault conditions without 
being misled by noise or irrelevant variations in the data. 

B. Model Development 

To tackle the challenges of intelligent fault diagnosis in 
rolling bearings, a robust incremental learning model was 
developed. This model leverages a combination of deep learning 
techniques and incremental learning strategies to ensure high 
adaptability and accuracy over time. 

As shown in Fig. 1, the backbone of the model is a Wide 
Deep Convolutional Neural Network [9] (WDCNN), 
meticulously crafted to handle vibration signals from rolling 
bearings with high precision. The architecture comprises seven 
weight layers, including six convolutional layers and one fully 
connected layer, arranged to progressively refine feature maps 
and enhance fault detection capabilities. The initial 
convolutional layer utilizes large 64x64 kernels to capture a 
broad spectrum of features from the input data, while subsequent 
layers employ 3x3 kernels to extract finer details. Each 
convolutional layer is followed by a 2x2 max pooling layer that 
reduces data dimensionality and highlights essential features for 
accurate fault classification. The activation functions across all 
hidden layers are Rectified Linear Units (ReLU), which 
introduce necessary non-linearity efficiently, aiding the network 
in learning complex fault patterns without compromising 
training speed. Following the convolutional and pooling layers, 
the network transitions into a fully connected layer that 
culminates in a softmax output layer, categorizing input signals 
into various fault types based on the features learned. The model 
employs cross-entropy as its loss function, as shown in (2), 
where �̂�𝑛 is the softmax output of the model, and 𝑦𝑛 is the one-
hot true label vector of the input data.. Cross-Entropy loss can 
effectively quantify the discrepancy between predicted 
probabilities and the actual classifications, thereby optimizing 
for minimal classification errors in fault diagnosis. 

ℒ𝐶𝐸(𝐲𝑛 , �̂�𝑛) = −𝐲𝑛 ⋅ log �̂�𝑛  (2) 

The incremental learning component of the model leverages 
the GEM algorithm. As shown in Fig. 2, it utilizes a replay 
approach where the model is periodically trained on a subset of 
old training data alongside new data. This process ensures that 
the model retains familiarity with historical fault patterns while 
continuously adapting to new ones. The key aspect of GEM is 
its ability to maintain performance on previously learned tasks 
by managing how new knowledge is integrated. This is achieved 
through a unique gradient projection method, which is central to 
the GEM approach. 

 

Fig. 1. WDCNN architecture [9] 



 

Fig. 2. Replay model training pipeline 

Initially, WDCNN model 𝐺(𝜃)  is trained on dataset 𝐷0 

using the cross-entropy loss 𝐿𝐶𝐸 . Subsequently, using the 

Nearest-Mean-of-Exemplars (NME), an exemplar set 𝐸0 is 

constructed with the aid of the model’s feature extractor φ. For 

each incremental phase i, the CNN’s output layer randomly 

initializes weights for each new class. The model is then fine-

tuned on 𝐷𝑖  and 𝐸0:𝑖−1 , where 𝐷𝑖  ∪  𝐸0:𝑖−1  is inherently 

unbalanced because 𝐸0:𝑖−1  contains only a small sample of 
previous classes. All parameters 𝜃  within the network are 
updated in each incremental process. At the end of each 

incremental phase i, the fine-tuned model predictor 𝑓
𝜃
 𝑖 is used 

to predict the test set samples. 

The Nearest-Mean algorithm [3] constructs the exemplar set 
using the feature extractor φ, where the mean is the average of 
the feature vectors, and the feature vectors are obtained from 
the feature extraction layer of the model (φ, excluding the final 
decoding layer). Whenever the model encounters a new class, 
its exemplar set is adjusted. In this scenario, all classes are 
treated equally; thus, when T classes have been observed thus 
far, and M is the total number of samples that can be stored, the 
model uses 𝑚 = 𝑀/𝑇 samples for each class (rounded). This 
ensures that the memory budget for M samples is always fully 
utilized but never exceeded. 

Algorithm 1 NME CONSTRUCT EXEMPLAR SET 

input image set X = {𝑥1, … , 𝑥𝑛} of class y 

input m target number of exemplars 

require current feature function 𝜑: 𝒳 → ℝ𝑑 

𝜇 ←
1

𝑛
∑  

𝑥∈𝑋

𝜑(𝑥)  //current class mean 

        𝐟𝐨𝐫 𝑘 = 1, … , 𝑚 𝐝𝐨 

         𝑝𝑘 ← argmin
𝑥∈𝑋

∥
∥𝜇 −

1

𝑘
[𝜑(𝑥) + ∑  𝑘−1

𝑗=1 𝜑(𝑝𝑗 )]∥
∥ 

end for 

        𝑃 ← (𝑝1, … , 𝑝𝑚) 

output exemplar set P 

 

Algorithm 2 REDUCE EXEMPLAR SET 

input m        // target number of exemplars 

input 𝑃 = (𝑝1, … , 𝑝|𝑃|)       // current exemplar set 

𝑃 ← (𝑝1, … , 𝑝𝑚)           // i.e. keep only first m 

output exemplar set P 

 

 

The construction and management of the exemplar sets are 
governed by two algorithms: one selects exemplars for new 
classes, and the other reduces the size of the exemplar sets for 
previous classes. Algorithm 1 outlines the steps for exemplar 

selection. Exemplars 𝑝
1
, … , 𝑝

𝑚
 are chosen and stored until the 

target number m is satisfied. At each iteration, a sample from 
the current training set is added to the exemplar set such that 
the average feature vector of all exemplars closely matches the 
average feature vector of all training data. Thus, the exemplar 
set essentially acts as a priority list where the order of elements 
signifies their importance. The details of updating the exemplar 
set are further elaborated in Algorithm 2, where to reduce the 
number of exemplars for a class from any m' to m, exemplars 

𝑝
𝑚+1

, … , 𝑝
𝑚′  are discarded, retaining only 𝑝

1
, … , 𝑝

m
. 

In the GEM algorithm, gradients computed from the new 
data are projected onto the gradients from the old data. This 
projection ensures that the updates made to the model’s weights 
do not increase the loss on previous tasks, thereby mitigating 
any potential decline in performance on old data. Specifically, 
when the model is trained on new tasks, the gradient of the loss 
function with respect to the old tasks is calculated. If this 
gradient indicates that performance on the old tasks would 
worsen, the gradient for the new tasks is adjusted so that it lies 
within the space that does not harm the old knowledge. This 
approach not only preserves previously acquired information 
but also allows the model to continue learning new patterns 
effectively. 

III. EXPERIMENTS 

A. Experiment Setup 

Experiments were conducted in an environment equipped 
with an NVIDIA GeForce RTX1660Ti GPU, operating on 
Windows 10, using Python 3.9 as the programming language, 
primarily relying on the PyTorch 11.1 library. The model's 
hyperparameters were set as follows: batch_size = 32, 
learning_rate = 0.001, epochs = 100, increment_class = 2. 

TABLE I shows ten types of data information extracted 
from the Case Western Reserve University dataset [10], which 
serve as inputs for the model. 

TABLE I.  CWRU TEN-CLASS DATA INFORMATION 

Class 

Label 

Motor 

Load 
Fault Diameter Fault Location 

C1 0 Health / 

C2 0 0.007" Inner Race 

C3 0 0.007" Ball 

C4 0 0.007" Outer Race (@6:00) 

C5 0 0.014" Inner Race 

C6 0 0.014" Ball 

C7 0 0.014" Outer Race (@6:00) 

C8 0 0.021" Inner Race 

C9 0 0.021" Ball 

C10 0 0.021" Outer Race (@6:00) 

 

 

 



B. Application and Result Analysis 

All experimental results in this chapter are based on data 
preprocessed with Variational Mode Decomposition (VMD), as 
after testing five rounds of training with different preprocessing 
methods, the GEM model performed best with VMD. TABLE 
II shows the final model accuracy achieved with different data 
preprocessing methods. The parameters used for the 
Continuous Wavelet Transform (CWT) testing were as follows: 
sampling period of 1/12000, scale length of 128, and the 
wavelet base function was the complex Morlet wavelet. The 
number of intrinsic modes for EMD was set to 7, and for VMD, 
it was set to 4. 

VMD led to the most prominent effects in each round of 
incremental training with 100 epochs, maintaining final 
accuracies above 90%; EMD was next, with each round of 
incremental training with 100 epochs resulting in a final 
accuracy of 89%, while CWT was the lowest, with each round 
of incremental training with 30 epochs, ending with a final 
accuracy of 81%. The experimental results show that the VMD 
preprocessing method can effectively extract features 
beneficial for model learning. VMD optimizes signal 
decomposition by minimizing the bandwidth of each mode, 
possibly capturing key time-frequency characteristics in the 
signal more effectively, thereby improving the model's 
adaptability and accuracy to new data. Moreover, features 
processed by VMD may be more effective in mitigating the 
forgetting problem in incremental learning, as they provide 
more stable and distinctive feature representations. 

The model's performance during VEGEM model’s training, 
including average accuracy and Cross-Entropy Loss (CE Loss) 
is presented in Fig. 3. Throughout the model updating process, 
each incremental training step was set to 100 epochs. The 
training process demonstrated that the original model trained on 
the Phase 0 dataset could quickly converge to peak accuracy. In 
the subsequent four incremental training steps, cross-entropy 
loss gradually decreased as the epochs progressed, but the 
model consistently maintained an accuracy above 90%, 
eventually stabilizing at around 91%. 

TABLE II.  ACCURACY ACHIEVED BY CWT, EMD, VMD 

Preprocessing Method Proposed(VEGEM) 

CWT 81.2% 

EMD 87.8% 

VMD 90.6% 

 
Fig. 3. VEGEM model training process 

To analyze the performance of VEGEM in the fault 
diagnosis of rolling bearings, comparative experiments were 
conducted, and the method was compared with three types of 
non-incremental learning and two different variants. TABLE III 
displays the accuracy changes of various models over 5 phases, 
with 4 phases of incremental training (P 1 - P 4). 

R1, R2 and R3 are related non-incremental learning 
methods. R1 involves training the model with all known fault 
data alongside new fault data. This training method is used 
when fault diagnosis tasks increase without the use of 
incremental learning techniques, and results from this method 
are often considered the upper bound for incremental learning 
models. R2 and R3 employ transfer learning strategies for 
model training. R2 involves fine-tuning the classifier after 
freezing the feature extraction layers post training phase 0, 
whereas R3 fine-tunes the entire network, both experiencing 
catastrophic forgetting. TABLE III shows that the accuracy of 
R1 remains consistently at 100%, demonstrating the 
effectiveness of preprocessing and the WDCNN baseline model 
in extracting features from bearing fault signals. The accuracies 
for R2 and R3 drop significantly after each incremental round, 
with R2 decreasing more slowly because all classifiers in R2 
share the same feature extractor with fixed parameters, 
allowing stable gradient descent across new and old tasks. In 
contrast, R3, based on new task data, fine-tunes all parameters 
in the network, resulting in predictions for old tasks being 
nearly random. 

Variation1 and Variation2 are two ablation experiments 
concerning regularization and restricted replay to validate the 
advantages of the VEGEM model. Variation1 does not store old 
task data during training and relies solely on Knowledge 
Distillation Loss [2] (KD Loss), for incremental training. 
Variation2 combines KD Loss with Replay for incremental 
training. TABLE III shows that Variation1 performs the worst 
with a final accuracy of only 70.2%, due to its reliance solely 
on KD Loss. Variation2, on the other hand, builds on 
Variation1 by constructing a typical dataset based on the 
Nearest-Mean-of-Exemplars algorithm, thus performing old 
data replay and further reducing catastrophic forgetting. 
Therefore, Variation2 is more effective than Variation1. 

TABLE III.  ACCURACY ACROSS 5 PHASES FOR ABLATION STUDY MODELS 

Method P 0 P 1 P 2 P 3 P 4 

R1 100% 100% 100% 100% 100% 

R2 100% 74.2% 59.6% 48.8% 42.1% 

R3 100% 62.5% 44.4% 34.4% 28.8% 

Variation1 

(CE+KD) 
100% 94.1% 87.7% 79.0% 70.2% 

Variation2 

(CE+KD+Replay) 
100% 96.6% 92.7% 88.2% 83.7% 

Proposed 

(VEGEM) 
100% 98.9% 97.1% 93.9% 90.6% 

 

 

 

 



TABLE IV shows the relationship between final accuracy 
and memory size in the experiments for VEGEM and 
Variation2. It is apparent that the final accuracy for VEGEM is 
an increasing function of memory size, thus not requiring 
meticulous adjustment of this hyperparameter. VEGEM 
consistently outperforms Variation2 across multiple memory 
size ranges 

In terms of final accuracy, the R1 method proves that the 
WDCNN baseline model can effectively handle ten-class 
bearing fault diagnosis tasks. However, its flaw lies in the need 
to continuously store all data and retrain the model every round, 
which is extremely time-consuming. TABLE V shows the total 
time consumed by each method. For R2 and R3, which fine-
tune within the transfer learning context, fewer epochs are 
actually needed. However, to compare training durations, the 
time for all methods is noted when the epoch count is set to 100. 
Variation2 and VEGEM, both replay models, set their memory 
size to 200. The results indicate that the R1 method is the most 
time-consuming, requiring 11071 seconds, due to its time 
consumption being quadratic in relation to the total data volume. 
Although R1's model performance is stable, its inefficiency 
may pose a serious obstacle in rapidly changing real industrial 
environments. R2 and R3, as fine-tuning methods within 
transfer learning, generally have an advantage in time 
efficiency. Since R2 freezes the feature extraction layer 
parameters, its gradient computation is much faster than other 
methods, requiring only 720 seconds. Variation2, due to the 
need to compute gradients for additional regularization terms in 
the loss function and store old data for training, is second only 
to R1 in full training duration, requiring 7730 seconds. The 
VEGEM method, by making maximum use of old data to 
constrain updates, optimizes the training process and takes even 
less time than the two Variation models, only 4173 seconds. 

C. Comparison 

TABLE VI showcases a comparison between the VEGEM 
model and three other selected incremental models. The first 
model is the Dynamic Weight Allocation [11] (DWA) model. 
The second model, FT + NCC + H [12], represents a multi-class 
incremental learning framework that combines Fine-Tuning 
(FT), Nearest Centroid Classifier (NCC), and a herding method 
for exemplar selection. The third model is a Lifelong Learning-
based Diagnosis Method [13] (LLDM), which integrates a 
Dual-branch Aggregate Residual Network (DARN) with 
retained exemplars to overcome catastrophic forgetting and 
address the dilemma between stability and plasticity. 

TABLE IV.  ACCURACY  WITH DIFFERENT MEMORY SIZES 

Memory Size 20 50 100 200 400 

Variation2 

(CE+KD+Replay) 
71.8% 76.3% 80.2% 83.7% 87.2% 

Proposed 

(VEGEM) 
74.2% 80.9% 86.3% 90.6% 92.3% 

 

 

 

 

 

TABLE V.  TRAINING TIME FOR DIFFERENT MODELS 

Method Time(second) 

R1 11071 

R2 720 

R3 2762 

Variation1(CE+KD) 5217 

Variation2(CE+KD+Replay) 7730 

Proposed(VEGEM) 4173 

TABLE VI.  ACCURACY FOR DIFFERENT MODELS 

Method Accuracy 
Phase 

Numbers  

DWA [11] 

99.2% 2 

97.7% 3 

95.8% 4 

FT+NCC+H [12] 94.8% 4 

LLDM [13] 

96.5% 2 

96.3% 3 

92.9% 4 

Proposed(VEGEM) 

98.9% 2 

97.1% 3 

93.9% 4 

90.6% 5 

As shown in TABLE VI, with the increase in incremental 
stages, the accuracy of all models declines. However, the 
Proposed (VEGEM) model still maintains an accuracy of over 
90% after five incremental stages. Besides, the VEGEM model 
consistently outperforms the LLDM model across multiple 
phases, highlighting its superior learning and retention 
capabilities. The results for the three phases show that the 
VEGEM model is within less than 1% difference from the 
DWA model. Among all models, the DWA model performs 
best after four phases, thanks to its ability to dynamically 
allocate weights [11]. 

IV. CONCLUSION 

This research has demonstrated a comprehensive approach 
to fault diagnosis in rolling bearings, integrating advanced data 
preprocessing, robust model architecture, and sophisticated 
incremental learning techniques. Initially, the effectiveness of 
various data preprocessing methods was assessed. A rigorous 
comparison of CWT, EMD, and VMD revealed that VMD 
significantly optimizes the model’s ability to process and learn 
from complex signal data, thereby improving diagnostic 
accuracy substantially. 

Following the preprocessing stage, WDCNN was employed 
as the baseline model for fault diagnosis. Leveraging its deep 
learning capabilities, the WDCNN model was meticulously 
crafted to handle the intricacies of vibration signals from rolling 
bearings with high precision, establishing a solid foundation for 
subsequent incremental learning. 

The incremental learning framework was then enhanced 
using the GEM technique, a constrained replay approach that 
effectively manages gradient updates to prevent catastrophic 
forgetting. This method ensures that new learning does not 
disrupt previously acquired knowledge. When applied to the 
CWRU dataset, VEGEM model demonstrated exceptional 
adaptability and robustness, effectively incorporating new fault 



categories without losing accuracy on previously learned 
categories. Impressively, even after five phases of incremental 
learning, the VEGEM model maintained an accuracy rate above 
90%. 

The superior training efficiency of the VEGEM model was 
also highlighted. It not only outperformed traditional models in 
terms of diagnostic accuracy but also proved to be more time-
efficient during training. By leveraging stored data and 
employing a method of constraining gradient updates through 
projection, the VEGEM model efficiently minimized the need 
for extensive derivations typically required for loss function 
modifications. This streamlined approach to handling gradients 
significantly reduces computational demands, making it highly 
advantageous for industrial applications where time and 
resource conservation are crucial. 

In conclusion, the integration of VMD preprocessing 
techniques with the robust WDCNN architecture and the 
innovative GEM incremental learning method in the VEGEM 
model offers a comprehensive solution to the challenges of 
intelligent fault diagnosis in rolling bearings. Future research 
could further this work by exploring hybrid models that 
combine VEGEM with other advanced machine learning 
strategies to tackle increasingly complex diagnostic scenarios, 
paving the way for more adaptive, efficient, and reliable fault 
diagnosis systems in industrial settings. 
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