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Abstract—With the improvement of industrialization and 

modernization, the frequent stampede accidents in various 

places caused by the increasing urban population during 

holidays have attracted people's attention. The excellent crowd 

counting algorithm can help calculate the distribution of the 

crowd density in the area, which is widely used in video 

surveillance and public security. Therefore, the research based 

on crowd counting model is of great significance. Methods: This 

paper proposes an innovative model CNN-Transformer 

network (CNnet), which combines the convolutional neural 

networks (CNN) which can adapt to different human head sizes 

with the Encoder of Transformer which has greater capability 

of capturing global feature. Then the density map generated by 

CTnet is integrated to get the number of people. Compared with 

the single CNN structure, the model achieves better accuracy on 

several datasets. According to the experimental results, the 

combination of CNN and Transformer can indeed make use of 

the advantages of both to achieve the improvement of the model. 

However because of the fact that the current series binding 

method is relatively simple and cannot combine the advantages 

of the two to the greatest extent, the experimental results of 

CTnet have not made a huge breakthrough, and future studies 

are expected to explore a better combination way. 
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I. INTRODUCTION 

Crowd counting aims to calculate the number, density or 
distribution of a crowd in a scene or video. With the 
advancement of modernization, the urban population 
increases rapidly. When the crowd is highly concentrated, if 
the management is not proper, the crowded crowd is prone to 
stampede accidents and other malignant social events. 

The crowd counting system can help to carry out real-time 
statistics on the number, distribution, or density of people in 
relevant places, timely detect crowd crowding and abnormal 
behavior, and give early warning, so as to take measures to 
alleviate the occurrence of tragedy can be avoided. 

In addition, the crowd-counting algorithm is also highly 
transferable. Other target counting fields, such as bacteria and 
cell counting and car counting on the road, can be regarded as 
extended applications of the crowd-counting algorithm. 

Therefore, the research on crowd-counting algorithms is 
of important practical significance and application value. 

The original crowd-counting techniques extracted 
pedestrian features through computer vision methods, and 
then directly estimated the number or distribution of crowds 
in the image or video through object detection or regression. 
However, this method cannot extract more detailed abstract 
features from the input, and the actual accuracy gradually fails 
to meet the required demand. 

In recent years, because of the great improvement of deep 
learning technology, researchers tried to explore new crowd-
counting methods from the angle of convolutional neural 
networks (CNN) and proposed classical crowd-counting such 
as MCNN [1]. Multi-column deep neural networks (MCNN) 
map the input to its crowd density map and then calculates the 
number of the crowd through integral. Due to the use of a 
multi-column structure, It corresponds to three kinds of nuclei 
with different receptive field sizes, so the model can adapt to 
the large variety of human head sizes, thus improving the 
accuracy of the model [1]. 

Although CNN has reached great accuracy in the task of 
crowd counting with its good local feature-capturing ability, 
its difficulty in capturing global features has also led 
researchers at home and abroad to consider new 
improvements. Self-attention module in natural language 
processing was introduced into the field of computer vision 
several years ago. The introduction of a vision transformer 
(ViT) [2] makes up for the defects of CNN in capturing global 
features. Crowd models based on Transformer have also been 
proposed successively, such as TransCrowd [3], CCTrans [4], 
etc. 

However, few models combine the two models and try to 
further improve the performance of the model with their 
advantages. 

Therefore, this paper proposes a combined model of 
transformer and CNN based on the existing classical model. 
Feature maps are extracted from the input graph lines through 
CNN and then introduced into the Transformer encoder. 
Finally, crowd counting is predicted through one or more fully 
connected layers. This network architecture can not only use 
CNN to extract image features but also use Transformer to 
realize global context modeling. 

In this paper, the internal structure details of CNN and 
Transformer will be determined by experimental testing on the 
counting datasets of shanghai-tech and other mainstream 
datasets. In the end, this paper will also compare CNN + 
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Transformer model with classic models that only use CNN or 
Transformer. 

II. EASE OF USE METHODOLOGY 

A. Overview of our network architecture  

Our proposed crowd-counting method uses a multi-
column convolutional neural network (MCNN) in conjunction 
with the vision transformer (VIT) model [1]. We attempt to 
leverage this network configuration, known as CTnet, to 
lessen the effect of significant fluctuations brought on by 
various camera angles and picture resolutions on crowd-
counting performance. In the method fully supervised learning 
is used, which requires labels of each head in the training 
sample at the position level because generally, it is easier to 
get better performance compared with weak supervision [5].  

In addition, related work like [1] has indicated that rather 
than the output crowd’s total size, its density map can preserve 
more information and has better performance for inputs with 
widely fluctuating perspective effects [1]. For these reasons, 
our model receives images as input and outputs the crowd 
density maps. Then we compare it to the ground truth density 
maps to calculate the loss. As Figure 1 shows, CTnet has two 
modules: the MCNN module (MCM) and the Vision 
Transformer module (VITM). 

 

Fig. 1. Structure of CTnet.  

(Photo credit: original) 

B. MCNN module 

The first part of our proposed method involves using 
MCNN architecture to extract features from the input images. 
MCNN is composed of multiple columns, each with the same 
network structure (i.e., conv-pooling-conv-pooling) but with 
different receptive field sizes, to capture features at different 
scales [1]. Specifically, we set three columns with receptive 
field sizes (small, medium, and large). Each column consists 
of four convolutional layers. Figure 2 illustrates the structure 
of MCM, which comes from the original MCNN paper [1]. 

 

 

Structure of MCNN[1]. 

 

The column(small) contains the filters 5*5, 3*3, 3*3 and 
3*3. The column(large) contains the filters 7*7, 5*5, 5*5 and 
5*5. The column(large) contains the filters 9*9, 7*7, 7*7 and 
7*7. When an input image is given, it is sent to these three 
columns of the first convolutional layer, processed 
respectively and simultaneously with the filters 9*9, 7*7, and 
5*5. After each convolutional layer, instead of Dropout, BN 
is done for the regularization. BN was a method introduced by 
Ioffe and Szegedy [6], proved to have the ability to train the 
model with saturating nonlinearities and to be more tolerant to 
increased training rates than Dropout. As deep learning has 
advanced, BN has gradually replaced Dropout in modern 
convolutional architectures. We prefer it for the following two 
reasons: 

The regularization effect of Dropout in convolutional 
layers is limited, for the reason that the convolution layer has 
fewer training parameters, compared with the fully connected 
layer. The seventh reference [7] demonstrates the advantages 
of using dropout after batch normalization layers when the 
batch size is large (256 samples or more) and the dropout rate 
is low (0.125). (similar to the findings in [8]). Also, it makes 
the assumption that dropout failed in [6] because a tiny batch 
size was used during testing. In our work, the batch size is only 
2, so dropout is not used. After BN, the ReLU activation 
function is done, replacing all the negative values with zero. 
Between two convolutional layers, 2*2 max pooling is used.  

 Then the image matrix is passed through the next 
convolutional layer for further feature extraction, with the 
filters 7*7, 5*5, and 3*3 in different columns. This 
combination of the convolutional layer, BN layer, and ReLU 
function is performed 3 more times, the first two with pooling 
layers and the last one without. At last, we obtain three feature 
maps with the same size but different resolutions, then we 
concatenate them along the channel axis to obtain a combined 
feature map, using learnable weights. To feed the feature maps 
obtained by the MCNN into the ViT, we do not perform the 
Fully connected layer (or 1*1 convolutional layer), instead, 
we directly pass the input of the fourth convolutional layer 
into the ViT module. 

C. Vision Transformer module 

MCNN, the architecture along with feature fusion 

approaches to a regress density map, have been proven to be 

effective in solving the huge scale variations induced in dense 

crowds. However, since the CNN structure itself can only 



obtain local features and is not capable to obtain the 

connection between features and global context information, 

this paper considers introducing the Transformer structure 

after the MCNN structure to help the model obtain global 

information better and improve model performance. 
In 2020, the Google team proposed Vision Transformer 

(ViT) and then succeeded to use it for image classification. 

Although it is not the first paper to apply a transformer to 

visual tasks, its model is simple with good effect. The bigger 

the model is, the better performance it achieves. Since then, 

the transformer has become a milestone in the application of 

CV and triggered subsequent relevant research.  
 Therefore, this paper uses the architecture of ViT for 
reference and forms a series mode with MCNN to jointly 
extract human head features. Figure 3 shows how ViT works 
in CTnet. 

Fig. 2. Structure of TRM. 

(Photo credit: original) 

 

 In terms of the original ViT structure, this paper makes the 
following adjustments: 

 (1) The input was changed from the original map to the 
output of the previous MCNN.  

(2) According to the requirements of crowd counting tasks, 
the classification part of the ViT structure was removed, and 
the original sequence was directly output through the Encoder 
structure. Finally, the final output density map was spliced. 

The Transformer application part of our model is 
distributed next. In the Transformer part of the model, the 
output of MCNN is first divided into multiple patches (16x16), 
and then each patch is projected into Transformer as a vector 
of fixed length. The succeeding encoder functions exactly the 
same as the original Transformer did. Figure 4 illustrates the 
structure of the Encoder. 

 

 

 

 

 

 

 

 

 

Fig. 3. Structure of Encoder[2]. 

 
Following the above flowchart, a Transformer block can 

be divided as follow: 

(1)  Patch embedding: The picture is divided into a patch 
of fixed size. The size of the patch in this paper is 16x16. For 
example, if the input size is 256x192 and the image is divided 
into patches of fixed size, and the patch size is 16x16, each 
image will generate 256x192/16x16=192 patches, that is, the 
input sequence length is 192. Using patch embedding, we 
turned a visual problem into a seq2seq problem. 

(2) Transformer encoder: Input the patch sequence 
obtained in the previous step into the encoder. Layer 
Normalization's output dimensions remain unchanged. If there 
is only one head, the dimension of qkv is the same as that of 
the input. If there are n heads, the dimension of q k v is equal 
to that of the input divided by n, and there are n groups of q k 
v. Finally, the output of n groups of q k v is spliced together, 
and the output dimension is still the same as that of the input. 
Finally, after a Layer Normalization, the dimensions remain 
the same. 

(3) Merge into the final predicted density map: 
Concatenate the sequence of the previous step into the final 
output. 

So far, this is a demonstration of the principle of the 
Transformer block of our model. After passing the 
Transformer structure, the final output size is still the same as 
the intermediate output of MCNN, so as to ensure that the size 
mismatch will not occur in the loss function. 

D. Implementation details of model 

1) Loss function 

We use MSE (Mean Squared Error) L2 loss to evaluate the 

performance. It is defined as: 

 

L(θ) =
1

2N
∑ ‖D(Xi; θ) − Di‖2

2 N
i=1                 (1)  

                   
where L represents the loss parameterized by learnable 

parameters θ. N is the number of training images. Di is the 

ground truth density map of input Xi  and D(Xi; θ)  is the 

corresponding estimation. 



In the formula of MSE, we use 2N instead of N, because it 
is much easier to calculate the derivative of the loss function 
later on. We have compared MSE with RMSE (Root Mean 
Squared Error) and MAE (Mean Absolute Error). 

In our work, the total number of people is not large, so the 
squared difference between to be too large; in other words, 
there is no clear difference between MSE and RMSE (Root 
mean squared error). While compared with MAE L1 loss, 
MSE L2 loss was proved in the ninth reference [9] to have the 
following advantages: 

MSE or RMSE can better illustrate the error distribution. 
MSE is typically better at highlighting differences in model 
performance since it gives larger weight to the outliers and 
adverse situations. Set error = true value – predicted value. If 
error > 1, then MSE will further increase the error. MSE avoid 
the use of absolute value, which is seldom used and very 
undesirable in many mathematical calculations, because it 
could be challenging to determine the gradient or sensitivity 
of the MAE with regard to particular model parameters. 

2) Ground truth density map 
In our work, density maps of the dataset are used to train 

the model, so the method used to convert images labeled with 
head positions into density maps of people is important. The 
geometry-adaptive kernel technique is typically used for 
datasets with highly congested scenes. If a point is labeled in 
position xi, it can be represented as a delta function δ(x − xi).  
Gneralized in this way, an image with N points labeled is 
∑ δ(x − xi) 𝑁

𝑖=1 . 

In order to make density function continuous, δ(x − xi) is 

convolved by 𝐺𝜇𝑖,σi
 (Gaussian kernel), with parameter μi 

(standard deviation) and σi (kernel size). The Gaussian kernel 

size is a variance σi proportional to 𝑑𝑖̅, which represent the 
average distance from xi to its k closest neighbor. 

F(x) = ∑ δ(x − xi) ∗N
i=1 𝐺𝜇𝑖,σi

, 𝑤𝑖𝑡ℎ σi = 𝛽𝑑𝑖̅         (2)            

where F(x) represents the density map. N is the number of 
annotated heads. In accordance with [1], we configure k=3, 
beta=0.3 and μi= 15 constant. We also fix σi (standard 
deviation) for the low-density datasets.  

3) Training details 
We train our proposed method on the Shanghai-Tech 

dataset and evaluated its performance on several datasets. 
Adam optimizer is used for training, with a learning rate of 1e-
5 and momentum of 0.9. All the procedures are conducted on 
a computing system equipped with a GeForce GTX 1660Ti 
GPU and a RAM of 16 GB with a 64-bit operating system. 
We write the codes in Python 3.8 version, using Windows 10 
Home as the operating system. 

 

III. EXPERIMENT 

To evaluate the effectiveness, we assess our CTnet on two 
datasets: ShanghaiTech and UCF_CC_50. And then we 
compared it with original MCNN.  

A. Dataset 

1) Shanghai-tech  

There are two components in Shanghaitech dataset [1]: 
Part_A and Part_B. Part A contains 241,677 annotated points 
with a range from 33 to 3,139 individuals in each image. There 
are 182 testing images and 300 training images in part A, and 
the resolution varies greatly. Part B has 716 annotated images 
totaling 88,488 individuals with a range from 9 to 578 people 
per image. It consists of 316 testing images and 400 training 
images. Every image has a 768 x 1024 resolution. 

2) UCF_CC_50 

There are 50 images in the UCF CC 50 collection [10] with 
various crowd densities. It has 63,974 head annotations, and 
the resolution varies. The average head count per image is 
1279, with head counts ranging from 94 to 4543. 

B. Evaluation metric 

 In keeping with previous studies, the eleven and twelve 
reference [11, 12], we use MAE and MSE metrics to evaluate 
our method: 

                              MAE =  
1

N
∑ |zi − zî|

N
1                            (3) 

         

MSE = √
1

N
∑ (zi − zî)

2N
1 (4)                      

where zi,  zî  represent the ground truth and estimated count 
of the i-th input, respectively. N is the number of test images. 
Generally, MSE and MAE represent the robustness and 
accuracy of the estimations, respectively. 

C. Comparisons with original MCNN 

The outcomes of our method in comparison to the original 

MCNN are displayed in Table 1. On both two datasets, our 

proposed method achieved better performance. 

On Shanghai-Tech Part A dataset, our method achieved an 

MAE of 102.5 and an MSE of 156.3, while on Part B they are 

respectively 21.2 and 32.5. On UCF_CC_50 dataset, it 

achieved an MAE of 102.5 and an MSE of 156.3. 

TABLE I.  COMPARATIVE RESULTS 

Method Publications 
ShanghaiTechA ShanghaiTechB UCF_CC_50 

MAE     MSE MAE     MSE  MAE       MSE 

MCNN [1] CVPR 16 110.2    173.2 26.4     41.3  377.6      509.1 

Ctnet(ours) —— 102.5    156.3 21.2     32.5  362.7      467.6 



MCNN uses three columns with different filter sizes to 

make the features adaptive to different head sizes. However, 

its receptive fields are still fixed and not learnable, which 

means it cannot be changed and learned depending on 

different scenes. In this respect, our model, adding self-
attention mechanisms to MCNN, is more generalizable, 

which may be one of the reasons for its better performance 

on both datasets. 

 

IV. CONCLUSION 

 In this paper, we propose an innovative crowd-counting 
model, CTnet, for fully supervised crowd counting in images 
by combining CNN with Transformer. As far as we know, 
CNN, as a model structure that can effectively extract local 
human head features, is widely used in the field of crowd 
counting. The analysis shows that the attention mechanism is 
promising in global feature capture. Therefore, we adopt the 
multi-perception wild CNN model that can adapt to different 
human head sizes, combined in series with Transformer 
Encoder which is more efficient. In this way, the advantages 
of both can be combined effectively to achieve the 
improvement of model performance. 

A large number of experiments on challenging datasets 
show that CTnet achieves better counting performance than 
the convolutional neural network alone. There are still some 
deficiencies in the current research. The combination of CNN 
and Transform was simple in series, and other more complex 
combinations were not attempted. In the future, we plan to use 
the architecture interspersed with self-attention in CNN for 
fully supervised counting tasks and extend it to downstream 
counting tasks based on the dynamic video. 
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